US 2015/0362917 Al

[0017] The features and advantages described in the speci-
fication and in this summary are not all inclusive and, in
particular, many additional features and advantages will be
apparent to one of ordinary skill in the art in view of the
drawings, specification, and claims. Moreover, it should be
noted that the language used in the specification has been
principally selected for readability and instructional pur-
poses, and may not have been selected to delineate or circum-
scribe the disclosed subject matter.

II. Real-Time Messaging Platform Overview

[0018] FIG. 1 is a block diagram of a real-time messaging
platform 100, according to one embodiment. The real-time
messaging platform 100 (also referred to as a “messaging
platform”) includes a frontend module 110, a pilot frontend
module 122, a routing module 125, a graph module 130, a
delivery module 135, a message repository 140, a connection
graph repository 142, a stream repository 144, an account
repository 146, and an unmanned aerial vehicle (UAV) inter-
action engine 150.

[0019] The messaging platform 100 allows account holders
to create, publish, and view messages in a message stream
visible to themselves and other subscribing accounts of the
messaging platform 100. Account holders compose messages
using a client software application running on a client com-
puting device 105 (also referred to as a client 105 or a client
device), such as a mobile phone, a tablet, a personal computer
(laptop, desktop, or server), or a specialized appliance having
communication capability. The client software application
may include a web-based client, a Short Messaging Service
(SMYS) interface, an instant messaging interface, an email-
based interface, or an API (application programming inter-
face) function-based interface. The client computing devices
105 communicate with the messaging platform via a network.
The network may communicate information through wired or
wireless communication channels over a local-area network,
a wide-area network such as the internet, or a combination
thereof. The network may include multiple networks or sub-
networks.

II. A. Message Composition with a Real-Time Messaging
Platform

[0020] Messages are containers for a variety of types of
computer data representing content provided by the com-
poser of the message. Types of data that may be stored in a
message include text (e.g., a 140 character “Tweet”), graph-
ics, video, computer code (e.g., uniform resource locators
(URLs)), or other content. Messages can also include key
phrases (e.g., symbols, such as hashtag “#”) that can aid in
categorizing or contextualizing messages. Messages may
also include additional metadata that may or may not be
editable by the composing account holder, depending upon
the implementation. Examples of message metadata include
the time and date of authorship as well as the geographical
location where the message was composed (e.g., the current
physical location of the client 105).

[0021] Themessages composed by one account holder may
also reference other accounts. For example, a message may be
composed in reply to another message composed by another
account holder. Messages may also be repeats (or reposts) of
amessage composed by another account holder. Reposts may
also be referred to as “retweets.” Generally, an account refer-
enced in a message may both appear as visible content in the
message (e.g., the name of the account), and may also appear
as metadata in the message. As a result, the messaging plat-

Dec. 17, 2015

form allows interaction with a referenced account in a mes-
sage. For example, clients 105 may interact with account
names that appear in their message stream to navigate to the
message streams of those accounts. The messaging platform
100 allows messages to be private, such that a composed
message will only appear in the message streams of the com-
posing account and designated recipients’ accounts.

[0022] The frontend module 110 receives composed mes-
sages from the clients 105, interfaces with other internal
components of the messaging platform 100, and distributes
message streams to account holders. The frontend module
110 may provide a variety of interfaces for interacting with a
number of different types of clients 105. For example, when
an account holder uses a web-based client 105 to access the
messaging platform 100 (e.g., through an Internet browser), a
web interface module 114 in the front end module 110 can be
used to provide the client 105 access. Similarly, when an
account holder uses an API-type client 105 to access the
messaging platform 100 (e.g., through an application native
to an operating system of the client 105), an API interface
module 112 can be used to provide the client 105 access.
[0023] The routing module 125 stores newly composed
messages received through the frontend module 110 in a
message repository 140. In addition to storing the content of
amessage, the routing module 125 also stores an identifier for
each message. This way, the message can be included in a
variety of different message streams without needing to store
more than one copy of the message.

II. B. Connections in a Real-Time Messaging Platform

[0024] The graph module 130 manages connections
between account holders, thus determining which accounts
receive which messages when transmitting message streams
to clients 105. Generally, the messaging platform 100 uses
unidirectional connections between accounts to allow
account holders to subscribe to the message streams of other
account holders. By using unidirectional connections, the
messaging platform allows an account holder to receive the
message stream of another account, without necessarily
implying any sort of reciprocal relationship the other way. For
example, the messaging platform 100 allows account holder
A to subscribe to the message stream of account holder B, and
consequently account holder A is provided and can view the
messages authored by account holder B. However, this uni-
directional connection of A subscribing to B does not imply
that account holder B can view the messages authored by
account holder A. This could be the case if account holder B
subscribed to the message stream of account holder A; how-
ever, this would require the establishment of another unidi-
rectional connection. In one embodiment, an account holder
who establishes a unidirectional connection to receive
another account holder’s message stream is referred to as a
“follower”, and the act of creating the unidirectional connec-
tion is referred to as “following™ another account holder. The
graph module 130 receives requests to create and delete uni-
directional connections between account holders through the
frontend module 110. These connections are stored for later
use in the connection graph repository 142 as part of a unidi-
rectional connection graph. Each connection in the connec-
tion graph repository 142 references an account in the
account repository 146.

[0025] In the same or a different embodiment, the graph
module 130 manages connections between account holders
using bidirectional connections between account holders.



